Input Modeling with Phase-Type Distributions and Markov Models - ISBN: 9783319066745 - (ebook) - von Peter Buchholz, Jan Kriege, Iryna Felko, Verlag: Springer - Details - OvW eBook Shop

Details

Input Modeling with Phase-Type Distributions and Markov Models

Theory and Applications
SpringerBriefs in Mathematics

von: Peter Buchholz, Jan Kriege, Iryna Felko

55,92 €

Verlag: Springer
Format: PDF
Veröffentl.: 20.05.2014
ISBN/EAN: 9783319066745
Sprache: englisch

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Containing a summary of several recent results on Markov-based input modeling in a coherent notation, this book introduces and compares algorithms for parameter fitting and gives an overview of available software tools in the area. Due to progress made in recent years with respect to new algorithms to generate PH distributions and Markovian arrival processes from measured data, the models outlined are useful alternatives to other distributions or stochastic processes used for input modeling. Graduate students and researchers in applied probability, operations research and computer science along with practitioners using simulation or analytical models for performance analysis and capacity planning will find the unified notation and up-to-date results presented useful. Input modeling is the key step in model based system analysis to adequately describe the load of a system using stochastic models. The goal of input modeling is to find a stochastic model to describe a sequence of measurements from a real system to model for example the inter-arrival times of packets in a computer network or failure times of components in a manufacturing plant. Typical application areas are performance and dependability analysis of computer systems, communication networks, logistics or manufacturing systems but also the analysis of biological or chemical reaction networks and similar problems. Often the measured values have a high variability and are correlated. It’s been known for a long time that Markov based models like phase type distributions or Markovian arrival processes are very general and allow one to capture even complex behaviors. However, the parameterization of these models results often in a complex and non-linear optimization problem. Only recently, several new results about the modeling capabilities of Markov based models and algorithms to fit the parameters of those models have been published.?
1. Introduction.- 2. Phase Type Distributions.- 3. Parameter Fitting for Phase Type Distributions.- 4. Markovian Arrival Processes.- 5. Parameter Fitting of MAPs.- 6. Stochastic Models including PH Distributions and MAPs.- 7. Software Tools.- 8. Conclusion.- References.- Index.
Contains an overview of available open source software tools for parameter fitting of PH distributions and MAPsPresents a large number of algorithms to fit the parameters of PH distributions or MAPs according to measured tracesIntroduces the use of PH distributions and MAPs in stochastic models including simulation models, especially in the network simulator OMNeT++

Diese Produkte könnten Sie auch interessieren:

Mechanics of Composite, Hybrid and Multifunctional Materials, Volume 5
Mechanics of Composite, Hybrid and Multifunctional Materials, Volume 5
von: Piyush R. Thakre, Raman P. Singh, Geoffrey Slipher
PDF ebook
178,49 €
Pseudo-Regularly Varying Functions and Generalized Renewal Processes
Pseudo-Regularly Varying Functions and Generalized Renewal Processes
von: Valeri V. Buldygin, Karl-Heinz Indlekofer, Oleg I. Klesov, Josef G. Steinebach
PDF ebook
103,52 €